813461;【课程内容】
Week1
1 - 1 - Prediction motivation
1 - 2 - What is prediction
1 - 3 - Relative importance of steps
1 - 4 - In and out of sample errors
1 - 5 - Prediction study design
1 - 6 - Getting Data Overview
1 - 6 - Types of errors
1 - 7 - Receiver Operating Characteristic
1 - 8 - Cross validation
1 - 9 - What data should you use
Week2
2 - 1 - Caret package
2 - 2 - Data slicing
2 - 3 - Training options
2 - 4 - Plotting predictors
2 - 5 - Basic preprocessing
2 - 6 - Covariate creation
2 - 7 - Preprocessing with principal components analysis
2 - 8 - Predicting with Regression
2 - 9 - Predicting with Regression Multiple Covariates
Week3
3 - 1 - Predicting with trees
3 - 2 - Bagging
3 - 3 - Random Forests
3 - 4 - Boosting
3 - 5 - Model Based Prediction
Week4
4 - 1 - Regularized regression
4 - 2 - Combining predictors
4 - 3 - Forecasting
4 - 4 - Unsupervised Prediction
【下载地址】
本资源来源于 网络 付费网站 付费收集而来, 随时收集更新资源 本站专注搜集和分享各种付费网站资源,感谢您的信任
资源下载地址:
资源地址被和谐请前往网盘搜索资源
本站所有资源都来源于网络收集,网友提供或者交换而来!
如果侵犯了您的权益,请及时联系客服,我们即刻删除! |