Coursera精品课程录屏《机器学习基石》视频中文讲课+课件资料

5749
回复
26434
查看
  [复制链接]

2万

主题

2万

帖子

8万

积分

管理员

Rank: 9Rank: 9Rank: 9

积分
86707
发表于 2021-8-1 08:31:37 | 显示全部楼层 |阅读模式
32460;云计算说到底最核心的还是数据分析和机器学习

这哥们讲得很好,其个人水平很高,讲解得也很清楚,Coursera难得的中文授课课程,看录屏就不用花几个月去上课

看不懂《机器学习技法》的同学 先看这个课程

授課大綱
以下的每個小項目對應到約一小時的線上課程
When Can Machines Learn? [何時可以使用機器學習]
-- The Learning Problem [機器學習問題]
-- Learning to Answer Yes/No [二元分類]
-- Types of Learning [各式機器學習問題]
-- Feasibility of Learning [機器學習的可行性]
Why Can Machines Learn? [為什麼機器可以學習]
-- Training versus Testing [訓練與測試]
-- Theory of Generalization [舉一反三的一般化理論]
-- The VC Dimension [VC 維度]
-- Noise and Error [雜訊時錯誤]
How Can Machines Learn? [機器可以怎麼樣學習]
-- Linear Regression [線性迴歸]
-- Linear `Soft" Classification [軟性的線性分類]
-- Linear Classification beyond Yes/No [二元分類以外的分類問題]
-- Nonlinear Transformation [非線性轉換]
How Can Machines Learn Better? [機器可以怎麼樣學得更好]
-- Hazard of Overfitting [過度訓練的危險]
-- Preventing Overfitting I: Regularization [避免過度訓練一:控制調適]
-- Preventing Overfitting II: Validation [避免過度訓練二:自我檢測]
-- Three Learning Principles [三個機器學習的重要原則]

【下载地址】





本资源来源于 网络 付费网站  付费收集而来, 随时收集更新资源  本站专注搜集和分享各种付费网站资源,感谢您的信任


资源下载地址:
资源地址被和谐请前往网盘搜索资源
本站所有资源都来源于网络收集,网友提供或者交换而来!

如果侵犯了您的权益,请及时联系客服,我们即刻删除!




上一篇:Udacity、北邮、华盛顿大学 人工智能课程
下一篇:人工智能:IBM认知计算教程
回复

使用道具 举报

客服客服

客服客服

客服客服

客服QQ
微信扫一扫
自助开通会员后联系客服

QQ- Archiver-手机版-小黑屋- 副业项目_副业项目网

中国互联网举报中心 北京12318文化市场举报热线 网络110报警服务 蜀ICP备13002521号-1 | 业务许可证:B1.B2-20140071