深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。
【课程内容】
Audio Signal Processing for Music Applications
- Introduction
- Discrete Fourier transform
- Fourier theorems
- Short-time Fourier transform
- Sinusoidal model
- Harmonic model
- Sinusoidal plus residual model
- Sound transformations
- Sound and music description
- Concluding topics
Computer Vision 计算机视觉
- Overview
- Fundamentals of image formation
- Rigid body motion
- Orthogonal transformations
- Orthogonal transformations - Orthogonal Matrices
- Orthogonal matrices - Rotations and reflections
- Parametrizing Rotations in 3D
- Euclidean, Affine and Projective Transformations
- Dynamic Perspective
- Binocular Stereo
- Radiometry
- Image processing
- Orientation histograms
- Handwritten digit recognition - Introduction
- Support Vector Machines
- Transformation Invariance and Histograms
- Digit recognition using SVMs
- Random forests
- Detection of 3D objects
- Concluding Remarks
Image and video processing
- What is image and video processing
- Course logistics
- Images are everywhere
- Human visual system
- Image formation - Sampling Quantization
- Simple image operations
- The why and how of compression
- Huffman coding
- JPEGs 8x8 blocks
- The Discrete Cosine Transform (DCT)
- Quantization
- JPEG_LS and MPEG
- Bonus Run-length compression
- Introduction to image enhancement
- Demo - Enhancement Histogram modification
- Histogram equalization
- Histogram matching
- Introduction to local neighborhood operations
- Mathematical properties of averaging
- Non-Local means
- IPOL Demo - Non-Local means
- Median filter
- Demo - Median filter
- Derivatives Laplacian Unsharp masking
- Demo - Unsharp masking
- Gradients of scalar and vector images
- Concluding remarks
- What is image restoration
- Noise types
- Demo - Types of noise
- Noise and histograms
- Estimating noise
- Degradation Function
- Wiener filtering
- Demo - Wiener and Box filters
- Concluding remarks
- Introduction to Segmentation
- On Edges and Regions
- Hough Transform with Matlab Demo
- Line Segment Detector with Demo
- Otsus Segmentation with Demo
- Congratulations
- Interactive Image Segmentation
- Graph Cuts and Ms Office
- Mumford-Shah
- Active Contours - Introduction with ipol.im and Photoshop Demos
- Behind the Scenes of Adobes Roto Brush
- Introduction to PDEs in Image and Video Processing
- Planar Differential Geometry
- Surface Differential Geometry
- Curve Evolution
- Level Sets and Curve Evolution
- Calculus of Variations
- Anisotropic Diffusion
- Active Contours
- Bonus Cool Contrast Enhancement via PDEs
- Introduction to Image Inpainting
- Inpainting in Nature
- PDEs and Inpainting
- Inpainting via Calculus of Variations
- Smart Cut and Paste
- Demo - Photoshop Inpainting Healing Brush
- Video Inpainting and Conclusions
- Introduction to Sparse Modeling
- Sparse Modeling - Implementation
- Dictionary Learning
- Sparse Modeling Image Processing Examples
- A Note on Compressed Sensing
- GMM and Structured Sparsity
- Bonus Sparse Modeling and Classification - Activity Recognition
- Introduction to Medical Imaging
- Image Processing and HIV
- Brain Imaging Diffusion Imaging Deep Brain Stimulation
Natural Language Processing Collins
- Introduction to Natural Language Processing
- The Language Modeling Problem
- Parameter Estimation in Language Models
- Summary
- Tagging Problems and Hidden Markov Models
- Parsing and Context-Free Grammars
- Probabilistic Context-Free Grammars
- Weaknesses of PCFGs
- Lexicalized PCFGs
- Introduction to Machine Translation
- The IBM Translation Models
- Phrase-based Translation Models
- Decoding of Phrase-based Translation Models
- Log-linear Models
- Log-linear Models for Tagging
- Log-Linear Models for History-based Parsing
- Unsupervised Learning- Brown Clustering
- Global Linear Models
- GLMs for Tagging
- GLMs for Dependency Parsing
Neural Networks for Machine Learning
- hinton-ml(67课)
- neuralnets(78课)
Probabilistic Graphical Models
- Introduction and Overview
- Bayesian Network Fundamentals
- Template Models
- ML-class Octave Tutorial
- Structured CPDs
- Markov Network Fundamentals
- Representation Wrapup- Knowledge Engineering
- Inference-Variable Elimination
- Inference-Belief Propagation
- Inference-MAP Estimation
- Inference-Sampling Methods
- Inference-Temporal Models and Wrap-up
- Decision Theory
- ML-class Revision
- Learning-Overview
- Learning-Parameter Estimation in BNs
- Learning-Parameter Estimation in MNs
- Structure Learning
- Learning With Incomplete Data
- Learning-Wrapup
- Summary
《深度学习在互联网上的应用》
神经网络、深度学习方向书籍资料
- A Note on BPTT for LSTM LM.pdf
- cnn-lstm-ctc.pdf
- CNN与反向传播.pdf
- ctc.pdf
- Deep learning(1).pdf
- Deep Learning-Bengio .pdf
- deep learning.pdf
- deep-learning-nature2015.pdf
- deeplearning.pdf
- deeplearningbook-chinese-master.zip
- DeepLearningBook.pdf
- DeepLearning_MethodsandApplications-MR-Chinese.pdf
- deep_rl_tutorial.pdf
- Hinton.SOM.pdf
- Introduction to Deep Learning.pdf
- Neural Network and Deep Learning.pdf
- Supervised Sequence Labelling with Recurrent Neural Networks.pdf
- tr.pdf
- Unsupervised Learning of Edges_Yin Li_2016.pdf
- Week1d Introduction to CNNs (AlexNet).pdf
- 《神经网络与深度学习》邱锡鹏
- 《神经网络与深度学习综述DeepLearning15May2014.pdf
- 人工智能深度学习deeplearning_for_AI_course(2015_Spring)_927202100.pdf
- 刘昕 - 深度学习基础与实战_2017新版.pdf
- 可视化理解卷积网络Visualizing and Understanding Convolutional Networks.pdf
- 吴恩达深度学习基础教程.pdf
- 基于CNN的图片颜色处理.pdf
- 基于卷积神经网络的深度学习算法与应用研究.pdf
- 大数据,机器(深度)学习精品名师学习课程.pdf
- 深度学习.rar
- 深度学习word2vec学习笔记.pdf
- 深度学习基础及数学原理.pdf
- 深度学习基础教程.pdf
- 深度学习的基本理论与方法.pptx
- 电子书_深度学习方法及应用.pdf
- 神经网络和深度学习.pdf
- 神经网络与机器学习(原书第3版).pdf
- 神经网络与深度学习讲义20151211.pdf
- 神经网络原理.pdf
本资源来源于 网络 付费网站 付费收集而来, 随时收集更新资源 本站专注搜集和分享各种付费网站资源,感谢您的信任
资源下载地址:
链接:http://pan.baidu.com/s/1c1UIE6c 密码:n6zo
本站所有资源都来源于网络收集,网友提供或者交换而来!
如果侵犯了您的权益,请及时联系客服,我们即刻删除! |