课程介绍:
该课程为强化学习的基础课,在智能机器人控制中有大量的应用,它的“进阶”版DeepReinforcement Learning(AlphaGo的核心技术之一)。有别于“经典”的控制理论,比如Classical Control Theory (根轨迹、频域设计那些), Robust Control, MPC,Adaptive Control等等,它是Model-Free控制理论,相对来说有更大的自由度吧。它的部分控制策略也是有stability保证的, 具体可以去查查paper吧 (我是自控领域出生,对机器学习领域发展出来的控制理论了解不深)。
课程安排如下:
- Lecture 1: Introduction to Reinforcement Learning
- Lecture 2: Markov Decision Processes
- Lecture 3: Planning by Dynamic Programming
- Lecture 4: Model-Free Prediction
- Lecture 5: Model-Free Control
- Lecture 6: Value Function Approximation
- Lecture 7: Policy Gradient Methods
- Lecture 8: Integrating Learning and Planning
- Lecture 9: Exploration and Exploitation
- Lecture 10: Case Study: RL in Classic Games
本资源来源于 网络 付费网站 付费收集而来, 随时收集更新资源 本站专注搜集和分享各种付费网站资源,感谢您的信任
资源下载地址:
链接:https://pan.baidu.com/s/1_TFueOFnPhlpzjjnnUvO9g 密码:6dfl
本站所有资源都来源于网络收集,网友提供或者交换而来!
如果侵犯了您的权益,请及时联系客服,我们即刻删除! |